

JUNE 23-27, 2024

MOSCONE WEST CENTER
SAN FRANCISCO, CA, USA

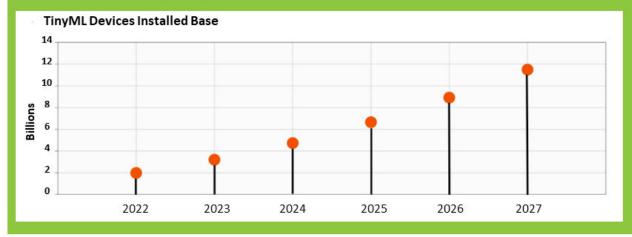
ReRAM: Enabling New Low-power Al Architectures in Advanced Nodes

Gideon Intrater

Weebit Nano

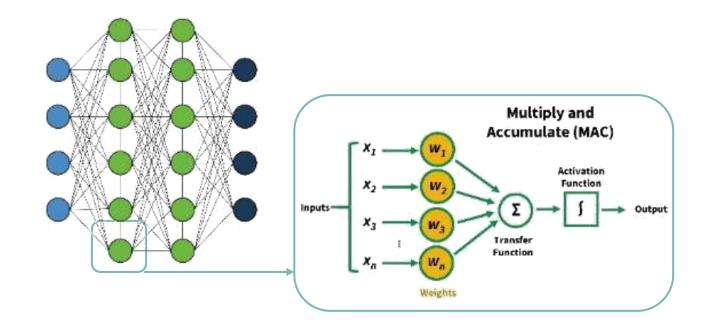
Agenda

- Al inference at the edge
- Compute Solutions based on Volatile Memories
- Introduction to ReRAM
- ReRAM-based Near-Memory Compute
- ReRAM-based In-Memory Compute
- Conclusions



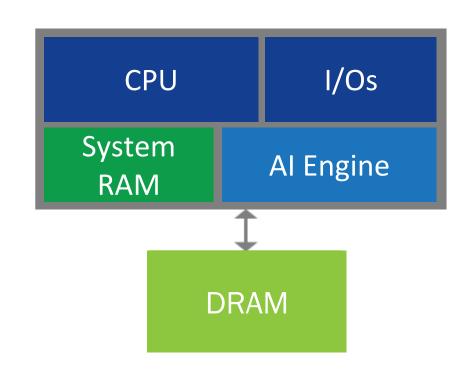
Al at the Edge

- Traditionally, a significant portion of Al inference has been performed in the cloud
- Al inference is increasingly local (edge), driven by:
 - Power efficiency
 - Ultra-low latency
 - Low bandwidth
 - Security/privacy
 - Smarter products; new applications
- Simple edge Al tasks are handled in software by MCUs
 - Flash-based MCUs implemented at ≥40nm technologies
 - Limited to the simplest algorithms due to power and performance limitations


Machine learning (ML) in IoT sensors & devices is growing rapidly

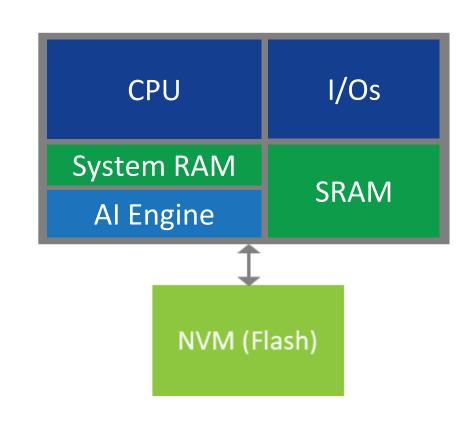
Source: https://go.abiresearch.com/lp-37-technology-stats-you-need-to-know-for-2023

Al Inference Basics


Most of the processing in AI are multiplications of vectors times a fixed weight matrix

- Weight matrix is large, typically up to 10s of MBs
- Weights need to be modified from time to time for updating the algorithms

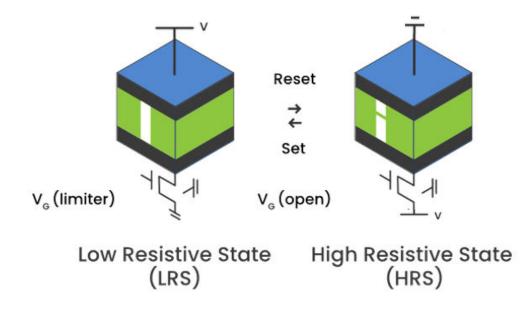
Building Edge Devices with AI Capabilities

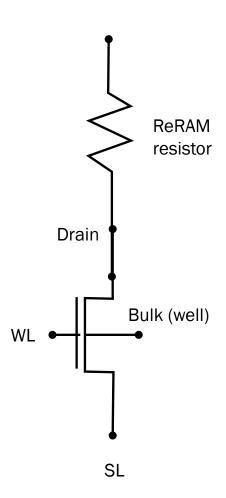

- Al accelerators enable advanced algorithms
- Al engines are complex circuits
 - Require large logic circuits
 - Consume a lot of power
 - Dictate advanced processes, 22nm and below to reduce the impact of the circuits' area and power
- Weights are held in DRAM
 - Computations are performed directly out of DRAM
 - Weights are being fetched from DRAM continuously

SRAM-based Near-Memory Compute

- At start-up, weights are copied from external NVM to on-chip SRAM
 - Reducing the power and latency associated with frequent DRAM accesses
 - Requires large and costly on-chip SRAM
 - During power-down
 - SRAM must be kept powered high leakage
 - Alternatively, SRAM must be reloaded upon power-up

Introducing ReRAM for Edge Al Applications




ReRAM Basic Operation

- ReRAM is based on oxygen vacancies filament (OxRAM)
 - By applying different voltage levels on the resistive layer, a filament is created or dissolved
 - RESET (Erase) Partial dissolution of the Conductive Filament: LRS –> HRS
 - SET (Program) Recreation of the Conductive Filament: HRS->LRS
 - Data retained within the stack is resilient to many environmental conditions

Low Power Consumption

- ✓ Low read voltage <1V</p>
- ✓ Low write voltage <3V</p>
- ✓ Low currents
- ✓ Zero standby power
- ✓ Fast operation

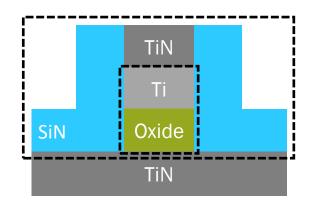
BL

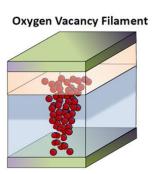
The Most Cost-Effective NVM Solution

2-mask adder

- Very few added steps compared to other NVM technologies
- Lower wafer cost than competing NVM technologies

Fab-friendly materials


No contamination risk, No special handling, etc.


Using existing deposition techniques and tools

Easy to integrate into any CMOS fab

BEOL technology

- Stack between any 2 metal layers
- No interference with FEOL Easier to embed with existing Analog and RF circuits
- Easy to scale from one process variation to another

ReRAM Advantages

3-4x

Lower added wafer cost vs. embedded flash

- ✓ 2-mask adder (vs. ~10)
- ✓ Shorter CT, fewer steps

10x

Better endurance vs. embedded flash

✓ Demo 100K-1M write cycles

More energy efficient

vs. embedded flash

✓ Low voltage, low current write operations



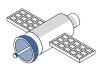
Scales to processes far

below limits of flash

✓ Proven @ 28nm and 22nm

✓ Scalable below

>10x


Faster program time than embedded flash

- ✓ Bit/byte addressable
 - ✓ No sector erase

Reliable for Automotive designs

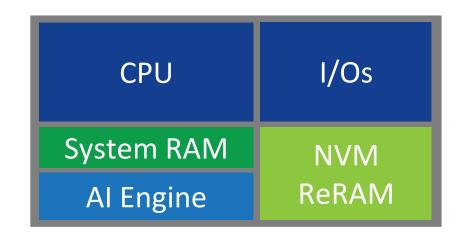
✓ Grade-0 conditions and profiles

~350x

Better radiation tolerance vs. flash¹

Also tolerant to EMI

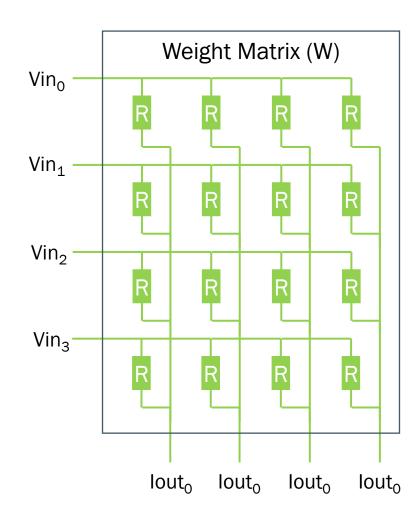
Interference w/ analog & power devices


✓ Best NVM for PMIC& mixed-signal

¹ Refers to ReRAM cell array

ReRAM in Near Memory Edge Inference

- ReRAM is available in 22nm with a roadmap to smaller geometries
- ReRAM can be implemented on the same die as the rest of the MCU and hold:
 - Al weights
 - CPU's firmware
- The resulting MCU will have:
 - Higher AI and CPU performance
 - Lower power; longer battery life
 - Lower cost; reduced SRAM and no external memory
 - Enhanced security
 - Better system integration


Analog In-Memory Compute Basics

- Most of the processing in AI are multiplications of the input vector times a fixed weight matrix
- Resistor arrays built out of ReRAM elements perform these operations instantly:
 - The weights are represented by $\frac{1}{R}$
 - Using Ohm's law each the current through each resistor is:

$$Iout = Vin \times \left(\frac{1}{R}\right) = Vin \times W$$

Using Kirchhoff's law, the current in each column is:

$$Iout_{j} = \sum_{j=1}^{j=n} W_{ij} Vin_{j}$$

How the Various Technologies Compare

	DRAM-based Compute	SRAM-based Near- Memory Compute	ReRAM-based Near- Memory Compute	Analog In-Memory Compute
High performance				
Low power				
Low cost				
Instant-on				
Available today?				

Summary

 ReRAM-based Near-Memory Compute is superior to DRAM and SRAM-based alternatives

 Offering better cost, performance, power and always-on availability

 ReRAM-based In-Memory Compute is a promising technology with advantages over all existing technologies

Thank You!

www.weebit-nano.com

