

How an Embedded Non-Volatile Memory Can Be a Differentiator

Eran Briman, VP Marketing & Business Development December 2022

Outline

Bottlenecks at the Edge

Intro to Weebit ReRAM

The State of Weebit ReRAM Today

ReRAM: Why Now?

Where ReRAM Can Provide Differentiation

Bottlenecks at the Edge

Sensing

Memory

Computing

Comms / Interface

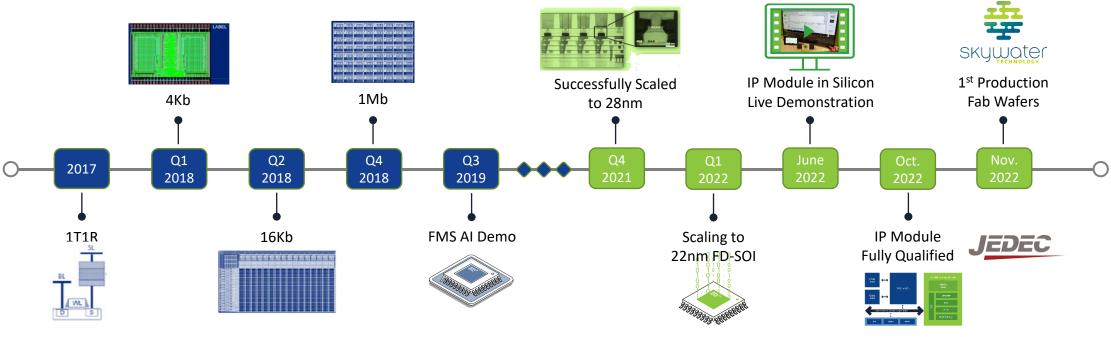
- **Bandwidth**
- **Speed**
- **Power Consumption**
- Security

Who Is Weebit Nano?

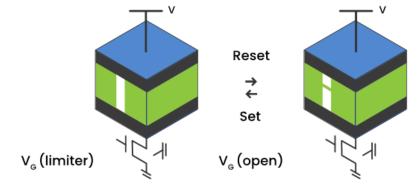
Leading developer of innovative next-generation memory technology: Resistive RAM (ReRAM)

Founded: 2015
Located in Israel &
France, ASX:WBT

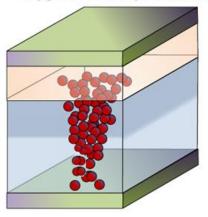
CEA-Leti: R&D partnerLeveraging years of research experience in NVM & ReRAM

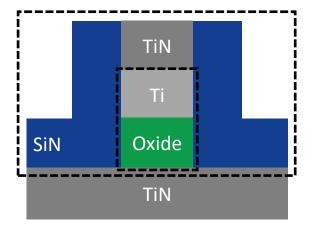

Current business model

IP licensing to semiconductor companies & fabs


Silicon-proven technology

Mbit arrays avail @ 28-130nm Fully qualified, production-ready

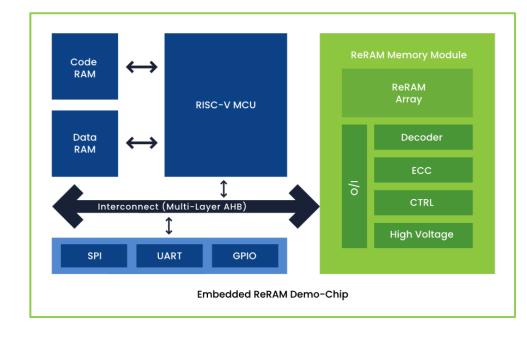

- Weebit's ReRAM is based on oxygen vacancies filament (OxRAM)
 - Depositing a dielectric layer between 2 metal layers at the BEOL
 - By applying different voltage levels, a filament is created ("1") or dissolved ("0")
- Data retained within the stack is resilient to environmental conditions
 - High-temperatures, radiation, EMI
- Most cost-effective NVM technology
 - Only two additional masks
 - Fab-friendly materials, no special handling
 - Using existing tools and equipment
- Power efficient NVM
 - Digital-core-voltage read
 - <2V write voltage</p>
- High performance
 - Fast access time
 - High endurance, long retention



Low Resistive State (LRS)

High Resistive State (HRS)

Oxygen Vacancy Filament



State of Weebit ReRAM Today: Technology is Qualified

- Weebit's ReRAM successfully passed the JEDEC industry standards for non-volatile memories (NVMs)
 - Confirms the suitability of Weebit's embedded technology for volume production
 - JEDEC standards impose rigorous testing of many silicon dies blindly selected from three independent wafer lots
 - All dies successfully passed the entire set of qualification tests for industrial-grade conditions

6

Weebit ReRAM Now Available in SkyWater Fab

256Kb ReRAM module available for customers' designs

Optimized for SkyWater 130nm node

Initial applications

- Analog, power management, mixed-signal designs
- IoT, industrial, automotive
- Aerospace, defense and military
- Data logging
- Heterogenous computing

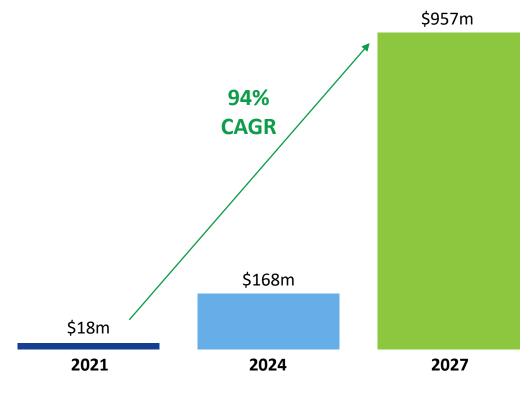
Benefits

- Excellent endurance and retention, even at high temperatures
- Ultra-low power consumption
- Tolerant to ionizing radiation and electromagnetic interference
- Inherently secure technology

Weebit Nano ReRAM Preliminary Key Features
--

Technology	130nm, SkyWater S130
Mask Adder	2
Supply Voltage	1.8V Read 1.8V+3.3/3.6V Program
Cell Programming Voltage	1.4V - 1.8V Set & Reset
Read Access Time	<20nsec
Operation Temp.	-40°C - 85°C (Can be extended to -55°C - 125/150°C)
Capacity	256 Kbit (Can be customized for 128Kbit – 2Mbit)

https://www.skywatertechnology.com/ip-partner-weebit-nano/


Contact info@weebit-nano.com

ReRAM: Why Now?

- Power and cost pressures are increasing
 - Advanced nodes are necessary
- Flash scaling complexity & cost are growing
 - Some solutions evolve but are sub-optimal
- Investment in emerging memory tech is increasing
 - Resolving some key challenges in ReRAM (e.g., variability)
- Embedded emerging NVM market expected to reach \$2.9B by 2027
 - ReRAM expected market share: 33%

Embedded ReRAM Market Size 2021 - 2027

Source: Yole Emerging Non-Volatile Memory 2022 Note: The embedded emerging NVM market size is evaluated based on assumptions of the average chip area occupied by a given memory technology (Yole)

ReRAM Fits a Broad Range of App Requirements

Based on a back-end-of-line (BEOL) technology, ReRAM nicely scales:

- ♦ 130 nm \rightarrow 65 nm \rightarrow 28/22 nm \rightarrow 1X nm
- Bulk CMOS, FD-SOI, FinFET
- Mixed-signal, High-Voltage, Low Leakage, RF CMOS, High-Performance

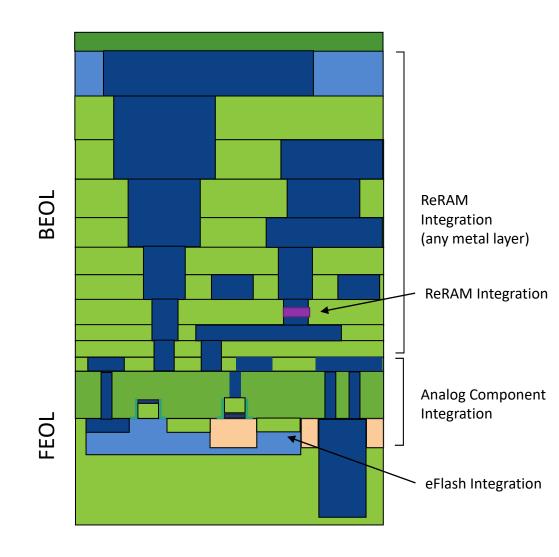
Mixed-Signal & **Power Management**

Internet of Things / MCUs

Edge Al **Applications**

Automotive

Applications


Aerospace & **Defense**

ReRAM – a Differentiator for PMICs

- Growing interest in emerging NVM for mixed-signal
 PMIC designs
 - ♦ 130nm and below: flash too expensive; difficult to integrate
 - 65nm and below: + MCU integration becomes a reality;
 MTP cell too large
- Low-density NVM required for:
 - Tables and coefficients, trimming, configuration, MCU firmware
- Weebit ReRAM is:
 - Back End of Line (BEOL) NVM: no interference with FEOL components
 - Reliable at high temperatures
 - Cost-effective, only 2-mask adder

MCU/IoT: A Natural Fit for ReRAM Integration

- Billions of battery-operated edge devices
 - By 2026*: 55.7B connected devices worldwide;
 73.1 ZB of data generated from connected IoT devices
- Name of the game: System Integration
 - Flash not scaling below 28nm
- Embedded ReRAM has significant advantages over external NOR flash
 - Power: eliminate external memory interfaces
 - Speed: Avoid data fetching from external memory
 - Cost: Cut expensive SRAM or external flash
 - Reliability: Handles high temps; built for longevity
 - Endurance: Enables new use-cases
 - **Secure:** Instantiated on-chip, difficult to hack

Strong

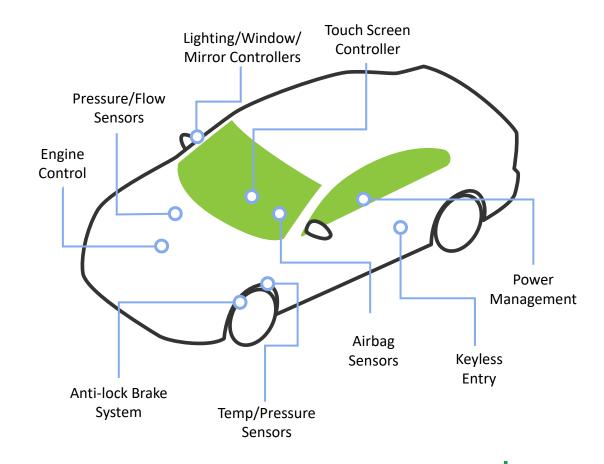
Security

Requirements

Fast Power-Up

Fast Access Time

^{*} Source: IDC Research 2021

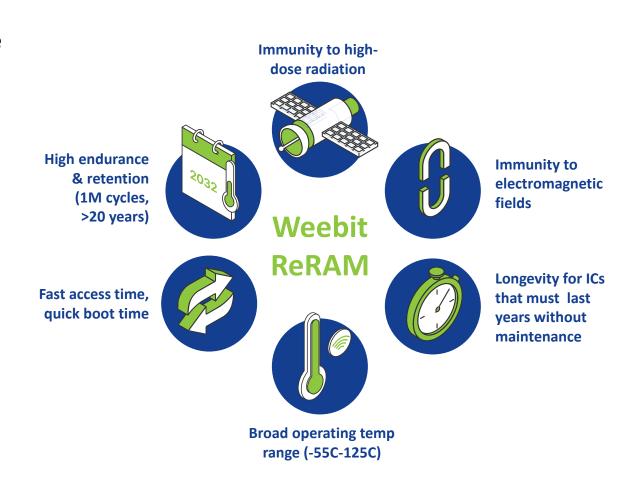

High Reliability and Endurance

Minimized Cost

New NVM Technologies Enable Automotive Differentiation

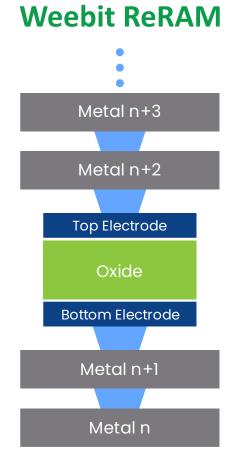
- Automotive ICs have unique requirements
 - Design for safety, security and longevity
 - Reliable at extreme temperatures, EMI, vibration, humidity, etc.
 - Support fast boot, instant response, frequent OTA updates
 - Advanced process nodes are adopted quickly
- Growing needs for emerging NVM
 - Needed for code storage, trimming, data logging
- Weebit ReRAM
 - High-temp reliability, immunity to EMI, endurance, fast switching speed, longevity, secure
 - Can effectively scale to the most advanced process nodes

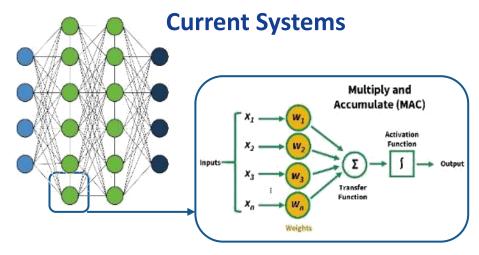
Some Places Where NVM is Found in a Car



Aerospace & Defense: Demanding Apps Need New NVM

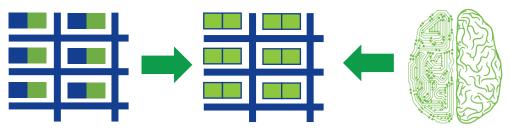
Growing interest in emerging NVM for aerospace and defense ICs


- Flash can't withstand radiation
- Flash isn't easily scalable into advanced nodes
- Limited endurance and energy efficiency
- Other emerging technologies sensitive to temperature and EMI
- Low density NVM required for:
 - MCU firmware, logging, configuration


ReRAM for Secured Applications

- In today's connected world, security is #1 threat
 - Smartcards, mobile payments
 - IoT devices, automotive, other connected systems
- ReRAM is more secure than other embedded NVMs
 - Keeps memory content including data, logs, and code safe from hacking
 - Much more difficult to intrude, read or modify
- ReRAM is also ideal for HW security mechanisms
 - Physical unclonable functions (PUFs)
 - True random number generators (TRNGs)

ReRAM to Drive Innovation for Edge AI and Future Neuromorphic Compute


Requirements

- High capacities (10MB-100MB), >SRAM
- Non-volatile behavior for synaptic weight storage
- Short latency / high bandwidth

Near Memory Compute

ReRAM brings NVM closer to compute

Brain Inspired Systems

Near Memory Compute (NVM)

ReRAM replaces expensive/power hungry SRAM

Analog In-Memory Compute (ReRAM)

ReRAM does storage and compute in the same place

Future systems will mimic the behavior of the human brain for fast real-time processing on massive amounts of data

Orders of magnitude improved energy efficiency

The Evolution of ReRAM: The Next NVM is Here

1960s - 2010s

ReRAM spent decades in research and development until the industry recognized the limitations of flash

2015 - 2016

- Weebit founded
- Partnering with Leti to drive development of innovative NVM based on 10+ years of research

- 2017 2018
- Weebit's first demonstrations of small ReRAM arrays
- Focus on fabfriendly and easy-tointegrate technology

- 2019 2021
- Weebit's technology matures
- IP productization
- First commercial deal
- Starting to scale technology to smaller process nodes

2022 – onwards

- Customers requesting ReRAM now
- Weebit ReRAM is industry-qualified, ready for production
- Multiple fabs considering Weebit ReRAM
- Weebit & Leti continue to innovate

Thank You!

www.weebit-nano.com

