

ReRAM: From Concept to Product

Amir Regev

Dec. 08, 2022

NVMTS 2022 select, redacted slides

Agenda

- Weebit Nano introduction
- ReRAM basic operation
- Lab-to-market challenges –
 Road towards product qualification

Conclusions

Who We Are?

Leading developer of innovative next-generation memory technologies for the global semiconductor industry

We are enabling a leap forward in memory technology for a new era of connected devices

Founded: 2015

Located in Israel & France ASX: WBT

R&D partner

CEA-Leti, leading microelectronics research institute

Silicon-proven technology

Volume production expected 2023 Proven in production-fab wafers

World-leading team

50 personnel* (90% engineers/ scientists)

Signed 1st commercial deal

Ongoing discussions with additional fabs and customers

Technology status

1st memory module demonstration; Successfully qualified IP module

Financial strength

Raised A\$35m in Nov. 2021 Well funded to 2024

Current business model

Product & IP licensing to semiconductor companies & fabs

Process nodes

130nm, 28nm, 22nm under development Bulk, FD-SOI, FinFET

^{*} Includes employees and full-time contractors

Weebit-Leti Development Partnership

- Weebit is collaborating with CEA-Leti since 2016 to develop its ReRAM
 - Leveraging >10 years of ReRAM research at Leti
 - Weebit has full rights to all ReRAM-related IP
- The Weebit-Leti development collaboration is yielding exciting results:
 - Mbit arrays demonstrated at 28nm 130nm

Cost Effective ReRAM NVM

2-mask adder

Very few added steps

Fab-friendly materials

No contamination risk, special handling, etc.

Using existing deposition techniques and tools

Easy to integrate into any CMOS fab

BEOL technology

- Stack between any 2 metal layers
- No interference with FEOL
- Easy to scale from one process variation to another

Oxygen Vacancy Filament

ReRAM Basic Operation

- ♦ SET (Program) HRS-> LRS
- ♦ RESET (Erase) LRS –> HRS

High Resistive State (HRS)

ReRAM Fits Various App Requirements

	Mixed-Signal / Power Mgmt	IoT / MCUs	Edge AI	Automotive	Aerospace & Defense
Back-end-of-line tech for easy analog integration					
Cost-efficiency	②		②	Ø	
Ultra-low power consumption	②		②		
Robustness in high temp / extreme environments	②			②	
Scaling advantage at 28nm and below			②	②	
High Endurance				②	
Small footprint to store very large arrays			②	②	
Longevity				Ø	
Roadmap to neuromorphic computing			②		

Making a Memory Product

Technology Demonstrations

SPIRIT Demo in FMS 2019

1st ever analog spiking neurons and ReRAM based synapses

Module Demo in *LID 2022*

Embedded ReRAM with RISCV processor

Weebit ReRAM Module Design in Qualification

- Integrating a ReRAM array in a complete module in 130nm technology
- The module includes
 - All analog circuitry
 - Smart algorithms (read, set/reset, forming)
 - Control logic and data manipulation
 - Redundancy, ECC
- The ReRAM module is further integrated into a complete subsystem based on a RISC-V processor
- Qualification concluded successfully

Embedded ReRAM Demo-Chip

Module design is tightly coupled with Weebit's process & memory cell

The Road from Design to Market

Technology Concept

- Every new technology starts with a concept
- Finding a promising materials set that demonstrates superior memory operation
- Performance should be groundbreaking –
 Advantages against the state-of-the-art
- Manufacturability Not every material is fab-friendly or easy to integrate / process
- Cost effective solution Should not include many added layers, special tooling or complicated process

temp range

Technology needs to be simple & easy to integrate

Its All About Statistics

Each new technology starts with few single cells, BUT:

- How will they behave if we put a million of them together on the same chip?
 - What does their distribution look like?
 - How is their cell-to-cell variability? Does the distribution have tails?
 - Does the farthest cell get the same condition as the nearest cell?

If we put millions of them on the same chip, how will they behave across an entire wafer?

- What is their die-to-die variability? Is performance uniform?
- What is the die yield (number of good dies per wafer)?
- What is the variance between different wafers and different production lots?
 - Does each lot have different results?
 - What is the lot-to-lot variability?
 - Is there any sensitivity to process variations?

From Analog to Digital

- In bit cell technology development, we look at analog value distributions
- Now we treat the values as data of zeros and ones, not just resistance values
- For a product to work, it needs to have no errors, otherwise data will be corrupted, or code will not
 execute correctly

Analog Resistance Values Code, or Data | Value | Val

Product Characterization & Qualification

Characterization

- Many conditions must be tested to determine performance to cover all operating conditions
 - Testing functionality at three temperatures Cold (-40°C), Room and Hot (85 °C/125 °C/150 °C)
 - Testing at spec voltage range (Min, Type, Max)
 - Testing corner lot to create process variations (Fast, Typical, Slow)

Qualification

- Testing three production lots samples at different times for the following:
 - Endurance
 - Retention
 - Read Disturb

Characterization & qualification can take some time

NVM Qualification Requirements

Hundreds of dies, blindly selected from 3 independent production lots, must pass 100% of tests defined by JEDEC:

Stress	Test Item	Reference	Stress Conditions	Test Conditions / Acceptance Criteria	Sample Size	Comments
NVCE	Endurance	JESD22- A117 JEDEC 47	Room and Hot	Datasheet Spec/ 0 Fails	3 Lots/ 77 units	Test all the array bits
UCHTDR	Data Retention	JESD22- A117 JESD47	Tstress – 125°C	1000 hrs/ 0 Fail	3 Lots/ 77 units	Readout at room and hot
PCHTDR	Post Cycle Data Retention	JESD22- A117	Tstress = 125°C 100% spec	10 hrs/ 0 Fail	3 Lots/ 39 units	Readout at room and hot
SMT	SMT Reflow	ESD22 - A113	Tc 260 °C	3 cycles/ 0 fails	3 Lots/ 25 units	Pb-Free Assembly Profile

All Weebit ReRAM units passed all tests with zero failures

Non-Volatile Cycling Endurance (NVCE)

*D. Alfaro Robayo, IEEE TED 2019

- Repetition of high stress during programming can lead to dielectric degradation due to defect generation
- After too many cycles, the dielectric can break leading to stuck LRS
- By smart algorithm we can reduce the stress and not break the filament

Non-Volatile Cycling Endurance (NVCE)

- ❖ For Program/Erase Endurance Cycling, a data change occurs when a stored "1" is changed to a "0", or when a stored "0" is changed to a "1"
- Failure occurs when a write or erase data pattern within the memory array does not correspond to the intended data pattern

Data Retention

- Data retention is a measure of the ability of a memory cell in an NVM array to retain its charge state in the absence of applied external bias
- Data retention failure occurs when a memory cell no longer detected to be in its intended data state
- ❖ A bit flip is defined as the failure of a bit to retain its data state after a program or erase operation

Conclusions

- After several years of development, Weebit demonstrate a qualified technology at 130nm with good demonstration at 28nm
- Excellent data retention and endurance is demonstrated on our first embedded IP Module demo chip
- 1st module with Leti is fully qualified at hot temp while our 2nd module at SkyWater is now starting qualification

Thank You!

www.weebit-nano.com

