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ABSTRACT

Conventional DNN (deep neural network) implementations rely on networks with sizes in the order of MBs (megabytes) and computation
complexity of the order of Tera FLOPs (floating point operations per second). However, implementing such networks in the context of
edge-AI (artificial intelligence) poses limitations due to the requirement of high precision computation blocks, large memory requirement,
and memory wall. To address this, low-precision DNN implementations based on IMC (in-memory computing) approaches utilizing NVM
(non-volatile memory) devices have been explored recently. In this work, we experimentally demonstrate a dual-configuration XNOR (exclu-
sive NOR) IMC bitcell. The bitcell is realized using fabricated 1T-1R SiOx RRAM (resistive random access memory) arrays. We have ana-
lyzed the trade-off in terms of circuit-overhead, energy, and latency for both IMC bitcell configurations. Furthermore, we demonstrate the
functionality of the proposed IMC bitcells with mobilenet architecture based BNNs (binarized neural networks). The network is trained on
VWW (visual wake words) and CIFAR-10 datasets, leading to an inference accuracy of �80.3% and �84.9%, respectively. Additionally, the
impact of simulated BER (bit error rate) on the BNN accuracy is also analyzed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0073284

Edge-AI (artificial intelligence) based on DNNs (deep neural net-
works) has emerged as an area of prime focus for researchers as well as
industry due to widespread applications such as smart cities, autono-
mous systems, and pervasive computing. Conventional DNN imple-
mentations require high-precision computing using floating-point
computations, which escalates energy costs. Additionally, due to physi-
cal separation between the storage/memory unit and the processor, a
memory $ compute bottleneck causes further limitations due to the
increasing size of networks. These factors further challenge hardware
implementations in terms of computation, memory, and communica-
tion (refer to Appendix S1 in the supplementary material). To address
this, low-precision DNN techniques have been proposed, where net-
works are realized using binary precision that makes them feasible for
edge-deployment by cutting down memory requirements (upto 32�).
To alleviate the memory wall issue, IMC (in-memory computing)
approaches based on NVM (non-volatile memory) devices have
emerged as a promising candidate. Some of the NVM technologies

explored for IMC applications for analog multiplication, including:
Flash,1,2 RRAM (resistive random access memory),3–6 and MRAM
(magnetoresistive random access memory).7 RRAM based XNOR
(exclusive NOR) bitcells provide the following advantages: (i) less area
and non-volatility compared to SRAM (static random access memory)
(�150 F2 per bitcell); (ii) lower operating voltages and faster memory
access time compared to Flash; and (iii) lower fabrication cost, reduced
area, and write energy compared to MRAM. In BNNs (binarized neu-
ral networks), multiplication is realized in the form of XNOR opera-
tions, while accumulation is implemented as bit-counting (popcount)
of bitwise XNOR outputs (refer Appendix S5 of the supplementary
material for more details). Using RRAM based IMC, it is possible to
implement XNOR BNN operations either in row3,4 or in column con-
figurations5 with both being demonstrated in the literature separately.
In this work, we propose a 2T-2R XNOR IMC bitcell using SiOx

RRAM devices and further exploit it for realizing BNNs on hardware.
Compared to the literature, we present the following aspects in this
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work: (i) experimental demonstration and validation of a dual-
configuration (row-wise and column-wise) 2T-2R XNOR bitcell
using fabricated SiOx based 1T-1R RRAM device arrays, (ii) perfor-
mance benchmarking of the state-of-the-art BNN8 (no integer
weights/activations even at input) for person detection using VWW
(visual wake words) dataset9 and CIFAR-10,10 (iii) analysis on impact
of the 2T-2R array size for both XNOR IMC bitcell configurations,
and (iv) analysis of simulated BER (bit error rate) on performance of
the XNOR IMC bitcell and BNN accuracy.

Figure 1(a) shows the SEM cross section of the fabricated SiOx

RRAM device integrated on top of 130nm CMOS technology in the
BEOL (back end of line) between the fourth and fifth metal layers. The
device stack is composed of TiN as an inert BE (bottom electrode),
non-stoichiometric SiOx as an active switching layer, followed by a Ti
layer (acting as an oxygen scavenging layer) and a TiN layer. Memory
dots are obtained by etching, followed by passivation layer deposition.
Then the TE (top electrode) contact is opened, and the fifth metal
line is processed. A single resistive memory cell comprises 1T-1R
(1 transistor-1 resistor), where the NMOS transistor acts as the
selection element in the array. The optimized 1T-1R bitcell area is
30F2. An electro-forming procedure is required on pristine devices
before executing SET/RESET programming operations. Figure 1(b)
shows electro-forming, SET and RESET programming characteristics
highlighting D2D (device-to-device) variability for the SiOx RRAM
device based 1T-1R array. Figure 1(c) shows SET/RESET switching
characteristics highlighting C2C (cycle-to-cycle) variability.
Electroforming/SET switching: The atomic SiOx layer material has wide
distribution of bond lengths and angles, thereby having large site-to-
site variations and defects (such as Frenkel pair). On application of
high electric fields, aforementioned defects decay into doubly charged
oxygen interstitial (Io) and doubly charged oxygen vacancy (Vo). Vo

can carry an inelastic trap-to-trap tunneling current; as a result, a CF
(conductive filament) is formed due to increased Vo density, and
RRAM switches to a LRS (low resistance state). Since the trap-to-trap
conduction mechanism is inelastic, heat is generated within oxide dur-
ing SET and RESET switching, resulting in a positive feedback loop
between the tunneling current and CF heating.11 By limiting the elec-
tric field (using current compliance), this run-away effect is prevented
across the oxide layer. RESET switching: When the negative bias is
ramped up at the TE, the reverse current and heat generation increase,
this activates the reverse mode of the interface reaction. The opposite
polarity of an electric field pushes back the Io into the bulk oxide

(towards the TE), where they recombine with Vo to weak spots result-
ing in rupturing of the CF. As a result, RRAM switches to a HRS (high
resistance state). Endurance characteristics and statistical distribution
of LRS/HRS regions are shown in Fig. S1 of the supplementary mate-
rial. Fabricated test chip to validate XNOR application consists of
8� 8 1T-1R RRAM device arrays. Figure S2(a) of the supplementary
material illustrates the schematic representation of the 8� 8 RRAM
array topology highlighting (i) Wordlines (WLs): the gate terminal of
transistors, (ii) Bitlines (BLs): the source terminal of all transistors, and
(iii) Select lines (SLs): the TE of all devices. Note that the BL and SL
run parallel to each other along a column on purpose. While other
XNOR implementations in the literature2,3,5 are array orientation sen-
sitive (i.e., they can function only across rows or columns but not both
within the same array), parallel SL and BL topology of the proposed
XNOR IMC bitcell helps it in realizing both row-wise and column-
wise functionality within the same array. To access a desired memory
bitcell, we select row address by enabling corresponding WL and col-
umn address by selecting BL/SL. Since LRS and HRS resistance values
are positive physical quantities, conventional RRAM devices cannot
directly encode/represent negative weight values (“þ1” and “�1”) as
required in BNNs. Hence, we have proposed the “2T-2R XNOR-
RRAM” bitcell for realizing XNOR-Net based BNNs. The topology of
the fabricated array provides support for two XNOR-RRAM bitcell
configurations: (i) XNORrow and (ii) XNORcol (refer to Fig. 2 and Fig.
S3 of the supplementary material). For both configurations, binary
weights are mapped onto the HRS/LRS values of RRAM devices,
whereas the binary activations are mapped onto the differential SLs
(for XNORrow) and WLs (for XNORcol). Since two devices are utilized
for representing each Logical weight (shown in Fig. 3 and Fig. S3 of
the supplementary material), array utilization is reduced by 50%. In
XNORrow implementation, one row is selected at a time by enabling
the corresponding WL. The 2T-2R bitcells of that row are effectively
realized in parallel through application of complementary signals
(Vread, 0) by the SL decoder on pairs of consecutive columns as shown
in Fig. 2(a). Summed-up current values (i.e., integrated Bitline current,
IBL,n) from the respective 2T-2R bitcells are passed to the IBL input of
the 1-bit CSA (current sense amplifier) in parallel. All n CSA blocks
function as a comparator (comparing IBL and IREF) and generate
binary voltage outputs (VDD,0), which are then fed to an analog adder
(referred to as Popcount block). CSA functioning and choice of IREF
are detailed in Appendix S4 of the supplementary material. The output
of the Popcount block is then compared against an input-specific

FIG. 1. (a) SEM cross section of the SiOx RRAM cell integrated on top of the 130 nm CMOS, (b) IV characteristics showing electro-forming, SET and RESET operation
highlighting D2D variability (20 devices), and (c) C2C variability during SET/RESET distribution over ten cycles.
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threshold (Vthresh) to generate final output for the row-wise multiplica-
tion using a digital comparator. In XNORcol implementation, multiple
WLs are activated in parallel to map inputs to all columns simulta-
neously. IBL is sensed across the CSA in the column as shown in Fig.
2(b) (for details refer to Appendix S4 of the supplementary material).
If the length of the input vector is greater than the number of columns
(for XNORrow)/rows (for XNORcol), weight vectors corresponding to a
neuron are partitioned and allocated on a separate set of rows/
columns. To obtain the dot-product of the applied input vector and
weights, “popcount” is computed over the XNOR outputs using analog
circuits as shown in Fig. 2 and Fig. S3 of the supplementary material.
The output of VVM (vector–vector multiplication) operations (i.e.,
Vout;j across column j of the matrix) is defined in Eq. (1). The output
current (Ii;j) of each XNOR cell is summed after post-processing using
a CSA (represented by F). The summed output voltage is then com-
pared with a threshold (Vthresh) based on the array size to obtain the
final multiplication output. A single 8� 8 1T-1R array can realize
VMM (vector matrix multiplication) operations for a weight matrix of
size 4� 8. Input and weight vectors of width 4 can be utilized in either
row or column configuration

Vout;j ¼
Xn

i¼1

FðIi;jÞ � Vthresh: (1)

For weight matrices larger than the array size, popcount is real-
ized using a multi-stage compute scheme where the XNOR bitcell

output is first amplified using the CSA. The partial sum output corre-
sponding to the partition of input and weight is then computed and
converted to a binary output. Binary outputs from all such partitions
are summed up with a weighting scheme based on array utilization,
i.e., the number of rows or columns occupied for the operation. A final
binarized value is then generated corresponding to complete input and
weight vectors. Summation performed at each row/column of the
array is shown in Figs. S3(a) and S3(b) of the supplementary material.
In the case of XNORcol implementation, all bitcells in the same column
are computed in parallel [Fig. S3(b) of the supplementary material] by
asserting all WLs simultaneously, thereby implementing binary MAC
(multiply-accumulate) computation in a single step.

Experimental results corresponding to XNOR IMC bitcell config-
urations are shown in Fig. 3. Due to differential mapping of weights/
activations, proposed bitcells have higher error tolerance for process
variation.7 Figures 3(a) and 3(b) illustrate all possible binary operand
mappings for XNORrow bitcell operation. Input activations “1” and
“0” mapped on the SL indicate Vread¼ 0.2 and 0V, respectively.
When both weight and input activation are of the same polarity, as per
the mapping scheme shown in Figs. 3(a) and 3(b), Iread corresponding
to the LRS device is sensed and thereby results in effective logic “þ1”
output. This satisfies XNOR bitcell criteria because of input activation/
weight value combinations of “�1”/“�1” and “þ1”/“þ1”; the effective
resistance range is the same. However, when weight and input activa-
tions have opposing polarities, Iread corresponding to the HRS device
is sensed and thereby results in effective logic “�1” output.
Experimental validation and current measurements for all four possi-
ble cases are presented in Fig. 3(c). The XNORrow approach has been
widely studied in the literature due to its relative robustness to device
variation.3 Figures 3(d) and 3(e) depict the mapping strategy to realize
XNOR operation along the column of the 1T-1R bitcell array. Input
activations are mapped on transistor gates of two selected 1T-1R bit-
cells (for effectively realizing 2T-2R), storing binary weight in differen-
tial format. Input activation and binary weight mapping for XNORcol

FIG. 2. (a) BNN computation mapping on XNORrow bitcells and its corresponding
popcount implementation. The output current from the 2T-2R bitcell is converted to
voltage using a CSA followed by summation in the popcount block. The popcount is
then compared to a pre-fixed threshold to obtain the output of VVM. (b) BNN com-
putation mapping using the XNORcol configuration and popcount is implemented
inherently over the fabricated RRAM array.

FIG. 3. Schematic representation/operand mapping corresponding to possible com-
binations of input activations (“�1,” “þ1”) and weights (“�1,” “þ1”) are shown for
(a) and (b) XNORrow and (d) and (e) XNORcol. (c) and (f) Experimentally character-
ized bitcell output current of four possible operand combinations for XNORrow and
XNORcol.
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are shown in Figs. 3(d) and 3(e), and measured Iread outputs corre-
sponding to four possible combinations are shown in Fig. 3(f). If Iread
� 10 lA for a single bitcell, the output logic is “þ1” indicating both
binary weight/input activation have the same polarity. In XNORcol

realization, popcount operation is inherently possible across the bit
strings/column (since the SL is common) with only need for a com-
parator, whereas for XNORrow this requires additional circuitry (refer
to Fig. 2).

Classification accuracy results for simulations performed using
(i) VWW and (ii) CIFAR-10 datasets are summarized in Table I. It
can be observed that the proposed IMC bitcell-based realization of
FracBNNs (refer to Appendix S7 of the supplementary material for
more details) shows good learning performance (i.e., � 80% inference
accuracy) for both datasets. Inference accuracy refers to the accuracy
estimated over the test split of the dataset (i.e., examples from the data-
set not observed during the training phase). To estimate energy and
latency of the proposed hardware, a matrix (MAT) size¼ 256� 256 is
selected to maximize parallel operations with Tread¼ 10 ls. MAT
(x� y) implies a memory matrix of specified bitcells with “x” rows
and “y” columns. Here, the MAT size refers to size of the 2T-2R array
matrix, i.e., it would result in 1T-1R MAT size of 256� 512 for
XNORrow and 512� 256 for XNORcol, respectively. Corresponding
operation energy of the MAT is estimated for both XNORrow and
XNORcol configurations. XNOR operation mapping for the network is
performed for each MAT based on which the total operation count is
computed. This count is used to estimate the inference energy and
latency. For the XNORrow configuration, the operations are performed
row-wise in a sequential manner, whereas for the XNORcol configura-
tion, all operations are performed simultaneously in the MAT. This
leads to a higher delay for XNORrow bitcells as shown in Table I.
However, it also presents an opportunity for energy savings in terms
of operation counts for asymmetric block matrices that have sizes
smaller than the total MAT size. Energy estimates reported in this
study account for CMOS periphery (CSA and row decoders) and addi-
tional read operations performed on the MAT (refer to Appendix S8
of the supplementary material). During the inference operation, the
same MAT is not reused for storing a separate set of weight values.
Hence, no additional delay/energy cost owing to multiple write opera-
tions for the bitcell needs to be considered.

For performance comparison of the two proposed XNOR IMC
schemes, extensive simulations have been carried out based on RRAM
LRS/HRS distributions [refer to Fig. S1(b) of the supplementary mate-
rial]. For both XNORrow and XNORcol configurations, VMM opera-
tion is characterized using the 8� 8 1T-1R array. Figures 4(a) and
4(b) illustrate the variability in CSA’s output for different popcount
outputs considering proposed XNOR IMC configurations. The
XNORrow configuration provides reliable sensing margins [see
Fig. 4(a)] as mostly resistance state distributions affects the sense_
outrow. Hence, RRAM devices with higher MW (memory window-

¼ ILRS
IHRS

) will boost the system efficiency using the XNORrow IMC

approach. On the other hand, the XNORcol approach offers better
speed, but there is a larger trade-off in terms of accuracy as shown in
Fig. 4(b). Since analog popcount computation is directly impacted by
D2D RRAM variability observed along the column devices, there is a
considerable overlap between sense_outcol values for different pop-
count outputs. Furthermore, the impact of MAT sizes in terms of
energy is analyzed for both XNOR IMC approaches to implement the
CIFAR-10 workload. The results are shown in Figs. 4(c) and 4(d). It
can be noticed that XNORrow offers better energy optimization when
considering pure XNOR operation cost. However, the overall energy
increases due to an increase in MAT accesses. As a result, XNORcol

emerges as a better IMC scheme in terms of total energy costs.
Since RRAM devices may experience different potential error-

inducing factors such as switching failures, sense/read failures,
variability, stochasticity, device-ageing, and read/program-disturbs, a
simulated BER analysis is also performed. Here, BER refers to the per-
centage of output bits that have errors relative to the total number of
trials performed for a single XNOR gate realized using 2T-2R IMC bit-
cells. In Fig. 5(a), the overall BER has been simulated as a lumped
parameter independent of any specific source of error to investigate

TABLE I. Performance of the trained BNN implemented using XNOR IMC bitcells.
Performance parameters used for the simulation are MAT size: 256� 256; Tread:
10ls; Vread: 0.2 V.

Parameter Configuration VWW CIFAR-10

Hardware platform 2T-2R XNOR IMC

Model precision Binary

Weight memory 3.37 MB 34.39 kB

Training accuracy (%) 79.6 96.0

Inference accuracy (%) XNORrow 80.3 84.9

Inference energy (mJ) 0.87 0.095

Inference latency (s) 0.18 1.62

Inference accuracy (%) XNORcol 76.31 83.4

Inference energy (mJ) 1.31 0.095

Inference latency (ms) 9.54 0.69

FIG. 4. Statistical distribution for VMM output variability for (a) XNORrow and (b)
XNORcol configurations. The simulations are performed on the 8� 8 1T-1R array
with all input combinations applied for �1000 trials. Energy trade-off analysis based
on MAT sizes for CIFAR-10 workload in terms of the XNOR operation energy and
total energy (XNOR operations þ CMOS periphery) for (c) XNORrow and (d)
XNORcol.
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the robustness of the IMC based BNN networks. A clear roll-off in
network accuracy is observed when the BER exceeded 10�2. Accuracy
loss in the case of VWW at higher BER is less (compared to CIFAR-
10) as it is a binary classification problem. It is observed that even in
cases where the RRAM devices are reliable and robust, the network
performance may be impacted due to the nature of RRAM LRS/HRS
distribution or the precision of the sense (read) circuitry. Using experi-
mental LRS/HRS characterization [Fig. S1(b) of the supplementary
material], statistical distribution parameters (mean, sigma) for the fab-
ricated 1T-1R device array have been extracted. Multiple IMC infer-
ence simulations are performed using the extracted device array
distribution parameters. Along with the resistance distributions, the
impact of varying the sensing (read) threshold current [Isense,th, labeled
as IREF in Fig. S3(c) of the supplementary material] has also been con-
sidered as shown in Figs. 5(b) and 5(c). A low Isense,th value indicates
the memory threshold is defined closer to HRS, minimizing any LRS
sensing error. Similarly, a higher Isense,th value indicates the memory
threshold is defined closer to the LRS, minimizing the HRS sensing
error. It is interesting to note that two different trends emerge depend-
ing upon the applied input combinations to the IMC bitcell. For input
combination¼ “00”/“11,” IMC bitcell’s logic output¼ “þ1,” i.e., the
LRS device should be read. Similarly, logic output¼ “�1” (i.e., the
HRS device should be read) when input combination¼ “01”/“10.”
Thus, it becomes essential to select a sensing threshold that can mini-
mize overall sensing error for accurate bitcell operation. Here, all input
combinations are assumed to be equi-probable for an ideal workload,
and the BER is characterized for the bitcell. An error minima can be
observed for Isense,th¼ 10 lA for the proposed IMC bitcell based on
measured device array parameters. To analyze the impact of Isense,th on
the BNN inference mode, two independent error models are imple-
mented depending upon the output states, i.e., “þ1” and “�1.” Figure
5(c) presents the impact of Isense,th on network accuracy for both

aforementioned datasets. The network accuracy trend for CIFAR-10
matches well with the error trend of the IMC bitcell shown in Fig. 5(b).
However, for VWW, the network performance improves even when the
error for “þ1,” i.e., error for reading an LRS device increases. It can be
hypothesized that this effect occurs due to inherent sparsity of the net-
work. Sparsity, in general, indicates data have higher count of “0”s.
Here, in BNNs, it indicates majority of devices accessed during read
operation are in the HRS. Clearly, using binary RRAM states (HRS/
LRS) for IMC limits the adverse impact of variability that would other-
wise reflect in analog VMM implementations. For the current imple-
mentation as shown in Fig. 5(c), the accuracy performance of the
network is limited. An effective way of countering this is to increase the
MW. The MW is a function of the statistical resistance distribution aris-
ing from the fabrication process related aspects, choice of active material
stack, programming conditions, read voltage, sensing precision, device
ageing, and other extrinsic factors such as temperature. Consequently,
even with fixed programming conditions, the MWmay vary or degrade
with cycling. Analysis summarizing the impact of variability of the MW
on BER and inference accuracy is shown in Fig. 5(d). In this analysis,
the LRS is fixed at 20kX and by sweeping the HRS from 42 to 800kX,
and the corresponding BER/inference accuracy is estimated using
repeated simulations (�1 million). As observed, the small MW leads to
read/write errors, thereby resulting in higher BER in the IMC architec-
ture. Using BER estimates, the outputs at each layer are computed, and
further network accuracy (inference accuracy) is analyzed. It can be
observed that MW �10 is sufficient for achieving reasonable learning
performance (within 2% of maximum). A constant value of Isense,th
¼ 10 lA has been used for all simulations of the MW.

In summary, a state-of-the art BNN implementation using XNOR
IMC based on SiOx RRAM device arrays for both row and column con-
figurations was experimentally demonstrated. The inference accuracy of
�80.3% and �84.9% was obtained for VWW and CIFAR-10 work-
loads, respectively. For RRAM IMC MAT size¼ 256� 256, per image
inference energy (and latency) was estimated to be 1.3 mJ (9.54ms) and
95 lJ (0.69ms) for VWW and CIFAR-10 workloads, respectively, using
the XNORcol scheme. Extensive analysis was performed comparing per-
formance of XNORrow and XNORcol configurations in terms of energy,
accuracy, and peripheral overhead. The impact of BER, RRAM device
variability, and MW on the IMC based BNN network accuracy was also
analyzed in detail.

See the supplementary material for details about the experimental
setup, mapping strategy for BNN applications on the fabricated
RRAM array, training of the network used as workload, energy estima-
tion methodology for RRAM based IMC, and benchmarking of the
current work with other literature NVM based XNOR IMC.
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FIG. 5. (a) Impact of BER on BNN accuracy for VWW and CIFAR-10 workloads.
For the XNORrow bitcell, the impact of Isense,th on (b) BER (for 1 million instances)
and (c) BNN accuracy for VWW and CIFAR-10 workloads. (d) Impact of the MW on
BER and inference accuracy (for VWW and CIFAR-10 workloads). All BNN accu-
racy simulations have been averaged over 10 trials and exhibit negligible variability
(�1%).
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